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ABSTRACT. From Shepard’s (1968) local-search method, algorithms are developed for contouring
on spherical surfaces and in Cartesian two-space. These algorithms are used to investigate errors
on small-scale climate maps caused by the common practice of interpolating—from irregularly-
spaced data points to regular-lattice nodes—and contouring in Cartesian two-space. Using mean
annual air temperatures drawn from 100 irregularly-spaced weather stations, the annual air-
temperature field over the western half of the northern hemisphere is estimated both on the
sphere (assumed to be correct) and in Cartesian two-space. When these fields are mapped and
compared, error magnitudes as large as 5° to 10° C appear in the air-temperature field approxi-

mated in Cartesian two-space.
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Within climatology, automated point
interpolation and isoline construction
have progressively supplanted drafts-
men’s relatively subjective methods.
Cartographers have devised numerous
digital algorithms for interpolation from
irregularly-spaced data points in Carte-
sian two-space to the nodes of a regular
lattice, and isoline placement among the
estimated grid-point values (Peucker
1980; Rhind 1975; Morrison 1974; Mar-
ble 1981). It is uncommon in climatolo-
gy, although possible, to draw isolines
directly from the irregularly-spaced
data, ostensibly because the grid-point
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values are frequently required for sub-
sequent analyses.

A subset of atmospheric research, un-
der the rubric “objective analysis,” con-
stitutes another source of potentially
useful interpolation and contouring pro-
cedures (Panofsky 1949; Cressman
1959; Barnes 1964; Fritsch 1971; Gan-
din 1963; Schlatter, Branstator, and
Thiel 1976; Wahba and Wendelberger
1980). In many ways, the development
of objective analysis parallels the ad-
vancements in cartographic interpola-
tion and contouring, except that the
impetus for and direction of objective an-
alytic research have largely been deter-
mined by the requirements of the
weather-forecasting community. Objec-
tive analysis, as a result, characteristi-
cally relies upon the typically smooth
nature of upper-air data, as well as
upon multivariate and autocorrelative
relationships beyond those contained in
the irregularly-spaced scalar field as-
sociated with a single variable. Many
objective functions, for these reasons,
may be inappropriate for mapping the
characteristically uneven scalar fields
associated with near-surface climate, al-
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though the objective-analysis literature
contains a number of innovative ap-
proaches to interpolation (Wahba 1979
and 1981; Wahba and Wendelberger
1980).

Most objective functions, like inter-
polation and contouring procedures
developed by cartographers, tacitly as-
sume that data values have been pro-
jected into Cartesian two-space (Wahba
and Wendelberger 1980). Only occasion-
ally have the true relationships between
the data and grid points on the surface
of the earth or sphere been preserved
and explicitly incorporated into an ob-
jective algorithm (Wahba 1979 and
1981).

Point interpolation and isoline con-
struction in climatology characteristi-
cally begin with the collection of data
values associated with an irregularly
distributed set of points on the surface
of the earth. For most climatological
purposes, the earth can be assumed per-
fectly spherical, with a trivial loss of ac-
curacy, and each data observation
(subscript i) of the variable of interest,
z;(\,d), can be uniquely located by sim-
ple longitude (\) and latitude (¢) coor-
dinates. Once the data points have been
compiled, they are usually projected into
a Cartesian two-space so that each
z;(\,d) becomes z,(x,y), and one of the
readily available Cartesian-based inter-
polation and contouring algorithms
(Marble 1981) can be applied to the data.
Many times the projection is indirectly
accomplished by the estimation of x and
y from an existing map or by the scaled,
but otherwise unaltered, assignment of
A and ¢ to x and y, respectively. Esti-
mates of z;(x,y) then are made at the
nodes (subscript j) of a regular lattice by
point interpolation, ordinarily followed
by the lacing of isolines through the lat-
tice of interpolated values. During con-
tour lacing, the points—grid points in
this case—are once again assumed to be
correctly related by the projected Carte-
sian geometry. Assumed Cartesian re-
lationships between the projected
points, in other words, underlie the in-
terpolation of grid-point values and of-

ten contribute twice to the estimation of
isoline locations.

In the mapping of climate fields that
extend over large areas of the earth’s
surface, however, spherical distance and
directional relationships cannot be ac-
curately preserved in translation to
Cartesian two-space. Subsequent inter-
polation and contouring, based on the
projected relationships, will necessarily
be in error. The magnitude of the errors,
of course, will depend completely on the
map projection selected, the distribution
of data and grid points, and the proper-
ties of the interpolation and contouring
algorithm. These errors can be large.

To avoid the propagation of such error
in small-scale mapping, climatologists
should perform their interpolation and
contouring on the surface of the sphere,
namely, in “spherical space.” That is,
the interpolation and contouring pro-
cesses should depend only upon the
spherical geometry that relates the grid
and data points on the earth’s surface.
Only after the grid-point values and con-
tour positions have been determined on
a sphere should they be projected onto a
map.

Even though most climatological pa-
pers do not describe or even cite the in-
terpolation and contouring methods
from which their climate maps were
generated, errors that derive from
Cartesian-based interpolations are com-
monplace. Any of the numerous SYMAP
(Shepard 1968), IMSL (Akima 1978), or
SURFACE II (Sampson 1978) computed
contour maps, for example, assume a
Cartesian space. On any given small-
scale climate map, particularly when
the algorithm is not described, the na-
ture and degree of error may be difficult
to ascertain. In cases where the mapped
area extends to one or both of the poles
or over all 360 degrees of longitude,
however, two symptoms stand out. Cy-
lindrical projections having as their
edges the north or south pole and the
dateline, for instance, typically exhibit
multiple isolines crossing the poles and
contours which do not meet at the date-
line (Schlatter, Branstator, and Thiel

The American Cartographer



1976; Halem, Kalney, Baker, and Atlas
1982; Rivin and Kulikov 1982). Clima-
tologists have largely overlooked inter-
polation and contouring errors produced
by the projection of data points into
Cartesian space prior to grid-point in-
terpolation and contouring.

To examine the degree to which
Cartesian-based interpolation and con-
touring can distort the small-scale map-
ping and analysis of climate fields, we
present the results of two sets of map
analyses based upon two modified ver-

sions of Shepard’s (1968) interpolation
algorithm, augmented with two contour-
lacing routines to permit the plotting of
isolines. We selected Shepard’s (1968)
function as a benchmark procedure be-
cause of its widespread use (by 1980, in
the form of SYMAP, it was implemented
at well over 500 organizations) and be-
cause it represents a class of point-in-
terpolation algorithms that have an
intuitive appeal (Shepard 1968) and are
“relatively robust” (Rhind 1975, p. 299).

Our first implementation of Shepard’s
method is quite similar to SYMAP’s, in-
asmuch as all interpolations and isoline
determinations assume that the data
and grid points are correctly related
in Cartesian two-space. Our second,
“spherically based,” version computes
all interpolations and isoline positions
from the actual data and grid-point
locations .on the surface of the sphere.
Longitude and latitude coordinates
associated with each spherically-derived
isoline are then projected along with all
other substantive elements of the map
onto a Cartesian two-space.

Following descriptions of these two
algorithms—with emphasis on spher-
ically-based procedures—we describe
results obtained from comparative map-
pings of an average annual air-temper-
ature field sampled from a recently
compiled world-climate data set (Will-
mott, Mather, and Rowe 1981). In other
words, our two implementations of
Shepard’s function follow, succeeded by
an examination of two air-temperature
maps derived from combinations of the
air-temperature field, two well-known
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cylindrical projections, and our two sets
of interpolation and contouring algo-
rithms.

Grid-Point Interpolation

Shepard’s interpolation function esti-
mates a value at each node of a prede-
termined lattice from a small number of
nearby data points. Developed for inter-
polation within Cartesian two-space, the
procedure accounts for the distance and
directional relationships between neigh-
boring data and grid points (Figure 1).
The algorithm also has a limited extrap-
olation capability that permits grid
points to take on values outside the
range of the data. Although there are a
few important differences between the
algorithms described here and Shepard’s
original function, the essence of his
function remains.

Based upon a simple gravity hypoth-
esis and other considerations (Shepard
1968 and 1984), the interpolation pro-
cedure requires that the value of each
nearby data point influence the estima-
tion of the associated grid-point value by
an amount proportional to the interven-
ing distance. Weights are ascribed to
three categories of distance according to

dij djx < 1/3
27 (&) \?

Sk= 4—1"]?)— 1 , I‘j/3<dj’k$rj
0, dy >

o)

where r; is the search radius and d;, is
the distance from grid point j to nearby
data point k. The subscript k2 (and later
0) is used to reference one of those data
points near j that belongs to the set of
data points influencing the interpolated
value at j. Following Shepard, the
search radius is initially defined as a
constant, that is, as the radius of a circle
(on either a plane or a sphere) that con-
tains an average of 7 data points. In cas-
es where fewer than 4 or more than 10
data points fall within r; of j, r; is ad-
justed. When the former occurs, r; is set
equal to the distance of the fifth-closest
data point, whereas in the latter case, r;
is redefined as the distance to the elev-
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Figure 1. Schematic representations of an irregularly distributed set of data points (O’s)
and of grid nodes ((I’s) a) on the sphere and b) projected into Cartesian two-space. Also

illustrated are the corresponding distance (d,

¢ and df,) and directional (83(%,)) and 0%(%,1))

relationships between the data and grid points in spherical (superscript s) and Cartesian

(superscript c) space. It should be noted that 63(%,0) # 65(&,]) or d},

enth-nearest data point. Four or 10 data
points will then lie within the circle
(area) of influence represented by the
adjusted search radius. Each grid-point
value thus represents a constant area of
influence—except when fewer than 4 or
more than 10 data points fall within the
initial search radius—and from 4 to 10
data values.

Thus for each grid point, two sets of n;
(4 < n; < 10) nearby data points are se-
lected, one set on the basis of Cartesian
distances from j in the projected two-
space and the other on the basis of dis-
tances from j on the surface of the
sphere. On the sphere (Figure 1A), d},,
the great-circle distance between points
J and &, is obtained from

cos df), = sin &;sin

+ cos djcos dycos (N — Ay, (2)

whereas Cartesian distance (Figure 1B)
is computed from the well-known rect-
angular-distance formula

3)
Superscripts ¢ and s, respectively, dis-

tinguish Cartesian from spherically-de-
rived distances and angles. When a

&y = lx — x)? + (v, — %108

# di,, or both.

distance or angle appears without a su-
perscript, it represents either system of
geometry. Each set of n; nearest neigh-
bors then is sorted in ascending order,
which results in d;; and d;,. being as-
sociated with the nearby dath points of
minimum and maximum distance from
J, respectively.

Once (S,, £ = 1,n) have been com-
puted, as in equation (1), Shepard’s func-
tion corrects for the “directional
isolation” of each data point relative to
all other nearby data points. Although a
few authors (Morrison 1974) have sug-
gested that such adjustments may be in-
consequential or even deleterious to
accurate reproduction of a known func-
tionally-derived surface, this correction
makes theoretical sense (Shepard 1984).
Directional isolation of each nearby data
point with regard to j is computed from

nj

Te = > S[1 - cos 8(k,D], 1k,

1=1

4)

where 6,(k,)) is the angular separation of
nearby data points k2 and / when the ver-
tex of the angle is defined as grid-point
J (Figure 1). The angular solitude of a
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data point with respect to j—on the
sphere—is derived from

cos df; — cos df ccos df;

cos 6fk.D = sin d5,sin df;

# k. 5)
For points projected into Cartesian
space, the separation is obtained from
the definition of the angle between two
vectors:

cos 85(k,1) = :
(Xk - Xj)(X] - X]) + (Yk - y_l)(y] - YJ)

®;, and dg( j,k)_= ¢; — &, The average
partial derivatives are taken as

0y
2 Wiz, — zdik)dg, 2

R I
Thus, data points having a small angu-
lar separation contribute less, individu-
ally, than points having a large angular
separation. With the directional isola-
tion of data-point & known, a combined
set of weights is calculated from

nj

W, = s§(1 + TS sl), 1k, (D

1=1

which limits the maximum influence of
the directional isolation of & to twice the
weight based on distance (Shepard
1984); that is, when
0
Te= 3 S ®)
1=1

To obtain non-zero gradients on the
interpolated surface at data points, in-
crements (Az,) are computed and added
to the respective data-point values (z;).
The correction involves finding an av-
erage weighted gradient for each of the
n; data points within r; of j, based upon
the collective rates of ¢ ange at the oth-
er data points within r;. On the surface
of the sphere, the incremental correc-
tions are obtained for each of the data
points associated with j from

Az = {B(AZ)] &Gk + M] dg(j,k)} x
N Iy 0 Iy

{viv + d3p, )]

where 0(Az)/0\ is the average partial de-
rivative with respect to longitude, 3(Az)/
3 is the average partial derivative with
respect to latitude, d{(j,k) = (\; — \})cos
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and
Wiz, — z)di(,k)dg, 2
a(Az)—‘ & 1z — z)d} k1
b [k J ’
> W
=1
1#Kk, (11)

where d§(l,k) = (\; — Ap)cos ¢, and
di(Lk) = &; — &, whereas a somewhat
arbitrary adjustment is made to limit
the influence of the increments to one-
tenth the data range, so [Az,| cannot ex-
ceed 0.1(max 2; — min 2;), where i again
refers to any data point on the map. Al-
though not obvious, the limit of |Az,| can
be deduced from equation (9) and the
Cauchy-Schwarz inequality. The adjust-
ment parameter (v) takes the form

0.1(max z; — min z;)

() DT
max||—— + | —
N 9 |x

Forms of (9) through (12) are also
used for Cartesian-based computations
with 9Az/ox, di(j,k), 8Az/ay, di(j.k),
di(Lk), di(L,k), and df, replacing 0Az/o\,
di(.k), 0Azlad, d3(k), dis i),
di(Lk), and dj ;, respectively.

With evaluation of these functions,
the value predicted at grid point j () be-
comes

12)

nj nj
> Wiz, + Az 2 Wy, dy; > e
. k=1 k=1
g = m
m~! 2 Zis d; <e
k=1
(13)

where m is the number of data points
within e of grid point j. Thus, when one
or more data points are sufficiently close
to a grid point (that is, within € of j), the
grid point takes on their average value;
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otherwise, part one of equation (13) de-
fines the interpolation function. On the
surface of the sphere, € is specified as the
maximum of a function of grid-cell lon-
gitudinal difference (A\) and latitudinal
range of the grid points; or grid-cell lat-
itudinal difference (Ad):
0.01max{0.5A\[cos(maxd:)

+ cos(mind><)],Ad>j,
(maxd;)(mind;) = 0.0

0.01max{0.5AN[cos(max|d;))
+ 11,A4},

(max4)(miné) < 0.0, (14)

where maxd; and mind; are the largest
and smallest latitudes, respectively,
found among all the grid points, and
max|d;| is the grid latitude of greatest
magnitude. In other words, when the
grid points lie entirely within either the
northern or southern hemisphere, €° is
computed from part one of equation (14),
whereas part two of equation (14) is
evaluated if the grid spans the equator.
For points in Cartesian two-space,

e = 0.01lmax(Ax,Ay), (15)

where Ax is the width and Ay is the
height of a typical rectangular grid cell.

‘a. Spherical Surface

With these modified versions of Shep-
ard’s algorithm, point interpolations
from irregularly spaced data points can
be performed for any bounded rectan-
gular or spherical lattice, as well as for
any spherical grid that spans the surface
of the globe.

Isoline Construction

Once data values have been estimated
at all nodes of a lattice, the gridded data
field must be described by the fitting
and subsequent plotting of isolines.
Cartesian-based methods of contour-lac-
ing are well known (McCullagh 1981),
but we needed a spherically based lacing
routine to position the isolines on the
surface of the sphere in order not to
contaminate the presentation of a
spherically interpolated field with a pro-
jection-related lacing error.

Our primary lacing unit is either a
spherical (AN-by-A¢) or a Cartesian
(Ax-by-Ay) grid cell whose vertices are
defined by 4 grid points (Figure 2). Each
grid cell is quartered by the definition of
a grid-cell “center” and the construction
of “half-diagonals” extending from each

b. Cartesran Swurface

1

Figure 2. Schematic diagrams depicting the placement of a) spherical and b) Cartesian grid-
cell centers (A’s) and the subdivision of each grid cell into four triangular sub-cells. A
hypothetical isoline (dashed) has been laced through the triangular mesh—intersecting the
edges of triangular sub-cells at points (O’s) determined by either great-circle or linear inter-
polation between the end-point values of the intersected edges—to illustrate the contour-

placement procedure.

10
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of the grid-cell corners to the center. On
the sphere, the center is located at the
average latitude and longitude of the
cell, and the half-diagonals are arcs of
great circles. In Cartesian two-space,
however, the center and half-diagonals
are defined by the intersection of diag-
onals of a grid quadrilateral (cell), which
has as its vertices 4 projected grid
points. Within each spherical or Carte-
sian grid cell, four triangles are thus
created. At the vertex shared by the four
triangles (the cell center), a value is es-
timated as the arithmetic mean of the
four corner values, although this com-
putation can be a source of error. When
the cell size is relatively small, as with
the maps next discussed, the error is in-
significant. On the other hand, when the
lattice is coarse, the center point and its
associated value should be more accu-
rately determined. With the definition
of a triangular mesh and estimation of
center-point values, all desired isolines
can be unambiguously positioned within
the interpolated scalar field.

From an initial point on or intersec-
tion with the edge of a first triangle, an
isoline must pass through the triangle
and intersect one of two opposite sides
at a point determined by the relative
magnitudes of the values associated
with the end points of the intersected
edge. The coordinates of each intersec-
tion are recorded. As the second inter-
section positions the isoline on an edge
of a triangle adjacent to the first, the
process may be repeated for the second
triangle and the coordinates of a third
intersection stored. Then a third trian-
gle adjacent to the second may be eval-
uated and so on until the isoline either
crosses a map boundary or closes itself.
By successively reproducing these cal-
culations for the desired number of
contour levels, a complete isoline rep-
resentation of the gridded data field can
be computed and stored.

From the series of intersection coor-
dinates associated with the desired iso-
lines, Cartesian-derived contour lines
have merely to be scaled and plotted—
along with such supportive information
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as a similarly projected graticule or
land-area outline—to produce a map.
Coordinate points associated with iso-
lines constructed on the sphere, as well
as any background information, must be
projected prior to scaling and plotting.

A Comparison of Spherically
and Cartesian-derived Annual
Air-Temperature Maps

To illustrate the degree and nature of
error which can be produced on small-
scale climate maps by projection of data
points prior to interpolation to a regular
grid and contouring, we sampled and al-
ternately mapped annual average air
temperature (°C) in the northern hemi-
sphere with both spherically and Carte-
sian-based interpolation and contouring
procedures. Using the data set compiled
by Willmott, Mather, and Rowe (1981),
we randomly drew 100 stations from the
subset of stations bounded by —170°
< A < —-50° and 2° < ¢ < 90°, which
resulted in a markedly uneven distri-
bution of station locations (Figures 3
and 4). We used two cylindrical map pro-
jections, Lambert’s equal-area and Mill-
er’s, to examine projection-related
dissimilarities that can occur between
isotherms estimated on the spherical
surface prior to projection and isotherms
determined in Cartesian two-space from
a previously projected set of data points.
We examined cylindrical projections be-
cause they comprise the largest group of
projections used to portray meso- and
macro-scale climate fields. An experi-
mental version of MAPRO performed
projection-related translations (Kansas
Geological Survey 1981); the land-area
outlines were taken from WORLDDA-
TABANK I (Central Intelligence Agen-
cy 1972).

Our interpolation began by superim-
posing a lattice 4° of latitude by 5° of
longitude—a grid size frequently used
in global climate models—over the area
to be mapped. Using spherical distance
and directional relationships between
the data and grid points, we initially
computed grid-point estimates of air
temperature and, subsequently, iso-

11



~50

50

} 3
—‘_.,Scale at 40°N
o e

Ty
\0
2

~170 -130

2

Figure 3. Isothermal representations of mean annual shelter-height air temperature (°C)
over the western half of the northern hemisphere using Miller’s cylindrical projection. From
100 irregularly-spaced data points (A’s), temperatures were interpolated to a regular 4°-by-
5° lattice and subsequently contoured. The solid isotherms represent interpolation and con-
touring on the surface of the sphere prior to Miller’s projection, whereas the dashed isotherms
depict interpolation and contouring in Cartesian two-space following Miller’s projection of

the data points into two-space.

therm positions. The A and ¢ coordinates
associated with each spherically esti-
mated isotherm and map were then
twice projected into Cartesian two-space
(with Lambert’s equal-area and Miller’s
projections). We next constructed two
comparable Cartesian-derived isotherm
maps by producing two projected sets of
data points—again using Lambert’s and
Miller’s projections—from each of which
we made Cartesian-based interpolations
to a correspondingly projected (now
rectangular) 4°-by-5° grid. The two

12

Cartesian-estimated, grid-point air-tem-
perature fields were each separately
contoured within their respective pro-
jected Cartesian spaces.

Before examining individual differ-
ences between spherically and Carte-
sian-derived isotherm patterns, we
should mention certain characteristics
that the maps presented here have in
common, largely owing to assumptions
embodied in Shepard’s algorithm (Fig-
ures 3 and 4). Where the station net-
work is sparse, both the spherical and
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Figure 4. Isothermal representations of mean annual shelter-height air temperature (°C)
over the western half of the northern hemisphere using Lambert’s cylindrical equal-area
projection. From 100 irregularly-spaced data points (A’s), temperatures were interpolated
to a regular 4°-by-5° lattice and subsequently contoured. The solid isotherms represent
interpolation and contouring on the surface of the sphere prior to Lambert’s projection,
whereas the dashed isotherms depict interpolation and contouring in Cartesian two-space
following Lambert’s projection of the data points into two-space.

Cartesian versions of Shepard’s function
will extrapolate into the voids in such a
way that the gradient of the tempera-
ture surface will diminish with distance
from the nearest data points, explaining
why, for instance, the isotherms spread
apart between Hawaii and Central
America. In a few instances, where a
large area contains but a single obser-
vation, the data point over-influences
nearby and not-so-nearby grid points,
flattening the interpolated surface
around the data point, for instance,
around Hawaii. Consequently, near the
edge of the flattening the surface gra-
dient must increase rapidly to accom-
modate the influence of “new” data

Vol. 12, No. 1, April, 1985

points that have come within the search
radii of the local grid points. The steep
north-south gradient between Hawaii
and Alaska at approximately 40°N lati-
tude, shown by the convergence of the
isotherms (Figures 3 and 4), exemplifies
this errant tendency.

To avoid an extra computational ex-
pense, we did not attempt to smooth the
isotherms; therefore, they have a slight-
ly jagged appearance. At the scale these
maps are presented, however, the lattice
is relatively fine, so the maps’ appear-
ance is not seriously compromised. This
relatively fine grid texture allows a cer-
tain clarity of interpretation since the
error exhibited by the Cartesian-derived

13



isolines is ascribable to the interpolation
process even though, generally speak-
ing, isoline misplacements are com-
pounded by contouring errors.

When the relationships between da-
ta and grid points on the sphere are
preserved during contouring, relative
isotherm positions remain constant re-
gardless of the map projection (Figures
3 and 4). Yet where data points are
projected prior to Cartesian-based in-
terpolation and contouring, isotherm
locations relative to each other and to
supplemental map information (land-
area outlines and data-station locations)
will inconsistently change from one ir-
regularly spaced station distribution to
another, as well as from one projection
to another. The inconsistency with
which such errors appear, from data set
to data set, and from projection to pro-
jection, results from synergism among
data-point distribution, lattice pattern,
and error inherent in the map projection
selected. The error field on such a map
may well be a unique result of the com-
bined influences of these three factors
and, therefore, difficult to evaluate.
When isotherms also are estimated on
the sphere, however, they can be com-
pared to the Cartesian-derived iso-
therms for any particular map of
interest.

Miller’s cylindrical projection—in
combination with the data- and grid-
point distributions—produced the most
striking differences between spherically
and Cartesian-estimated isotherm loca-
tions (Figure 3). In the high latitudes,
where the projection is highly exagger-

.ated and data points are few, there is
marked disparity between the two sets
of isotherm patterns. When correspond-
ing spherically and Cartesian-interpo-
lated grid-point values were subtracted
from each other, the magnitudes of
the differences in the higher latitudes
(b > 60°) frequently exceeded 5° or
10°C. The Cartesian-derived isotherms
generally fall north of their spherically
computed counterparts because, the pro-
jection places data points progressively
further apart as the pole is approached.
Another expression of the high-latitude
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error field is the Cartesian-derived —5°
and —10°C isotherms that head north-
west from about 70° north latitude, the
cooler of the two ultimately passing
through the pole. Annual isotherms ring
the poles—as is evident among the
spherically-derived isotherms—so there
is only a slim possibility that the Carte-
sian-derived —5° and —10°C isotherms
are correct. Such errors are common
when Cartesian-based interpolations
are made within cylindrically projected
two-space, though in this instance the
errant tendency is intensified by Shep-
ard’s constraint on the extrapolated
surface gradient. Where the data points
are most dense, as in the United States,
agreement between the two isotherm
systems is best, although discrepancies
still exist.

On Lambert’s cylindrical projection,
where latitude is compressed near the
pole to maintain equivalence, error
magnitudes resemble those of Miller’s
projection (Figure 4). In this instance,
however, the data points are placed
nearer each other as they approach the
pole, creating an unrealistically high lo-
cal variance in air-temperature at the
higher latitudes. Since the Cartesian-
based interpolation and contouring pro-
cedure treats the pole as a line on cylin-
drical projections, the abnormally high
variance in temperature creates large
fluctuations in the interpolated field and
its isothermal representation. Often this
erroneously causes multiple isotherms
to pass through the pole. Again, within
the area where the distribution of data
points is most dense, the spherically and
Cartesian-derived isotherms agree, but
not perfectly.

Such symptoms are typical of Carte-
sian-based cylindrically-projected maps,
especially when the map surfaces in-
clude high latitudes. Also, when a cylin-
drically projected map encompasses the
full, 360° range of longitude, east-west
trending isolines typically fail to con-
nect at the common longitude repre-
sented by the map’s vertical edges. Such
errors exist on all small-scale Cartesian-
derived isoline maps, although their
identification is often difficult because a
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map may not extend to at least one of
the poles or over 360° of longitude; the
interpolation or contouring process may
be constrained near map borders to
make the map appear correct; or too lit-
tle information about interpolation and
contouring methods is provided for the
map reader to make a meaningful eval-
uation. For these reasons, we recom-
mend that interpolation to a regular
lattice and contouring should take place
on the surface of the sphere, followed by
projection of isolines and other map in-
formation.

SUMMARY AND CONCLUSION

We have presented a sensitivity study
of the errors which can result on small-
scale climate maps from the common
practice of projecting data points prior
to interpolation and contouring. Work-
ing from Shepard’s (1968 and 1984)
well-known local-search interpolation
function, we have developed and de-
scribed two algorithms that perform the
interpolation and contouring process
both on the surface of the sphere and in
Cartesian two-space. To illustrate the
nature and magnitude of differences
that can occur between spherically and
Cartesian-derived interpolations and
contours, we mapped mean annual air
temperature over the western half of the
northern hemisphere, represented by
100 randomly selected stations, with
both algorithms on two well-known cy-
lindrical map projections: Lambert’s
equal-area and Miller’s.

When we superimposed spherically
derived isotherm maps—assumed to be
correct—over Cartesian-interpolated
and contoured maps, the error fields
generated by the Cartesian approach be-
came apparent. Local errors as large as
5° to 10°C commonly appeared in those
regions containing few data stations or
with large projection distortion. How-
ever, when a Cartesian-derived, small-
scale climate map encompasses most of
the globe, two characteristic errors can
often be discerned without reference to
a spherically-derived standard: fre-
quently, more than one isoline passes
through a pole or east-west trending iso-
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lines do not meet at the common longi-
tude represented by the vertical edges of
the map.

Our findings strongly suggest that the
interpolation to grid points and subse-
quent contour lacing on small-scale cli-
mate maps should, in virtually all cases,
be carried out on the surface of the
sphere. Otherwise, calculations per-
formed on the interpolated grid-point
values or climatic inferences made from
the isoline representations of raw and
gridded data fields will be in error. Since
our spherically and Cartesian-based
versions of Shepard’s algorithm and
their accompanying contour-lacing pro-
cedures are logically identical —except
that one set computes spherical dis-
tances and directions, and the other
Cartesian—our findings further sug-
gest that comparable errors will result
from the use of any Cartesian-based in-
terpolation and contouring method.
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